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Abstract—Obesity is an epidemic that currently affects millions
of people and is directly linked to diseases such as diabetes, heart
disease, and stroke. Measuring a patient's body fat composition is
essential to disease prevention, a task that is overlooked in
today's market. Here we introduce an improved body fat
calculator using a combination of bioelectrical impedance
analysis (BIA) and machine learning (ML) to maximize device
accuracy. We do so by incorporating a commonly used Arduino
microcontroller to generate a 5V, 50 kHz square wave to be sent
throughout the body, the device processes this signal and utilizes
the Arduino to calculate body fat composition that is then
displayed on an LCD. Machine model training was tested to
calibrate the best fitting for our device. With BIA, we created a
working device that could help improve the health of patients
with poor lifestyles.

Index Terms—Body Fat, Electrodes, Bioelectrical
Impedance Analysis, Machine Learning.

I. INTRODUCTION
Addressing the pressing health concern of obesity affecting

over 40% of the US population, a range of devices and
analytical methods have emerged to quantify body fat
percentage. Among these, dual-energy X-ray absorptiometry
(DXA) is widely used. DXA utilizes dual-power X-ray beams
to scan the entire body, distinguishing between bone, fat, and
muscle for volume calculations [1]. Although widely used,
DXA requires a radiology technician, involves low doses of
radiation, and may not be suitable for certain patients [2].
Hydrostatic weighing, another method, immerses the patient in
water and compares their weight on dry land and in water,
estimating lung volume and differences in bone, muscle, and
fat density [3] [4]. While effective, this method can be
stressful for patients, particularly the elderly or ill, due to the
need for multiple submersions. The skinfold measurement is
another technique that is utilized. It measures skin thickness at
specific sites using calipers and uses the measurements from
the calipers to estimate body fat percentage. However, this
technique requires a trained technician and is prone to errors
from incorrect site measurements [5]. Another technique used
to measure body fat composition is Bioelectrical impedance
analysis (BIA). BIA analyzes body fat composition by passing
a low-power AC current through the body, and the voltage is
measured to calculate the body impedance [5] [6] [7] [8]. The
relative simplicity of implementing and using devices
designed using BIA makes it a popular technique for body fat
composition analysis. Despite BIA's advantages, its
assumption of a "cylindrical-shaped ionic conductor with
homogeneous composition" poses accuracy challenges [9].
This paper focuses on designing a body fat measuring device,
considering BIA's minimal equipment and training
requirements, making it suitable for general public use [9] [10]
[11]. To enhance accuracy and mitigate assumption-related
errors, a machine learning (ML) aspect is incorporated into the

device analysis. This innovative approach aims to optimize the
device's performance and usability, ensuring reliable body fat
percentage measurements in a safe and accessible manner for
diverse user demographics. The information drawn from these
sources contributes to a comprehensive understanding of
existing body fat measurement methods and informs the
development of an advanced and user-friendly solution.

II. OUR APPROACH

A. Hardware Setup
Our device schematic is divided into three parts as shown in

Fig.1. The first part of the circuit consists of a non-inverting
amplifier that receives a 50 kHz, 5V square wave input from
the microcontroller (MC). A frequency of 50 kHz is used
because it is the frequency at which body fat can be measured
[12]. The non-inverting amplifier behaves as our current
source which supplies a constant current of about 40-50
microamps. The value of R3 is set to 100k ohms as it allows
for a constant current of around 40-50 microamps to flow
through the electrodes. The output of the non-inverting
amplifier and its negative terminal are connected to the
negative and positive input terminal of the voltage subtractor
circuit respectively which forms the second part of the circuit.
The voltage subtractor circuit reads the voltage across the
electrodes connected to the subject. The resistors connected to
the voltage divider circuit are all set to be equal in order to
achieve unity gain. This allows the output of the voltage
subtractor circuit to be just the voltage difference across the
electrodes. The third part of our circuit consists of a simple
diode circuit that provides us with a single voltage value by
rectifying the signal. This is fed into the ADC input of the MC
to further process and find the body fat composition which
would be displayed on the LCD as seen in Fig. 2.

Fig. 1 Schematic Setup.

Our MC was able to generate a 5V 50 kHz square wave seen
in Fig. 3 which would be sent throughout the subject’s body.
The voltage subtractor circuit would then record the signal
across the human impedance also seen in Fig. 3. After
rectifying the signal with a diode, we were able to read a DC
signal as shown in Fig. 4.
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Fig. 2 Hardware Setup.

Fig. 3 Output of the MC and voltage subtractor circuit.

Fig. 4 Output of the diode circuit.

B. Embedded Setup
The design for our device is built around the basic BIA circuit
model. Our device uses ATMEGA382P microchip, a chip
known for its versatility, programmability, and low power
requirements to process the device’s output voltage signal and
utilize it in body fat calculation. The code and the formula
used to calculate the body fat percentage from the device’s
output voltage and the input age and weight of the user are

given below in Fig. 3 and Fig . 4 respectively.

Fig. 5. Arduino code for calculating body fat.

Fig. 6. Formula for calculating body fat [13].

C. Device Results
After creating our device, we were able to compare our device
with an existing body fat composition device on the market.
We used the OMRON Body Composition Scale to compare
with our data shown in Table 1. The OMRON scale included
metrics such as height, age, gender, and weight to determine
body fat whereas our device considered age, weight, and
gender. Our device was calibrated based on the data we
collected along with data from a study based on dozens of
participants.

Table 1.
Device

Measured
Body Fat %

OMRON
Scale Body

Fat %

Subject's
Age

Subject's
Weight

Subject's
Gender

11.5 13 20 145 Male

13.8 21.4 21 180 Male

14.6 13.5 20 170 Male

20.3 16.98 22 200 Male

13.6 24.3 20 141 Female

19.3 23.9 20 207 Male

13.8 12.15 20 120 Male

21.1 24.9 19 135 Male

13.3 14.9 22 168 Male

14.8 18.5 20 147 Female
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D. Machine Learning
The ML model consists of 4 key components: Data

Handling, Feature Selection, Model Development and Model
Evaluation. To determine the most appropriate model for
predicting body fat percentage, we used a mock dataset from
the internet consisting of 252 sample points. This dataset was
used for the sole purpose of model selection.

Fig. 7. Mock Dataset

The models under consideration are Ridge Regression,
Random Forest, Support Vector Machine, Decision Tree
Regression, LASSO regression and Linear Regression. The
features analyzed in this mock dataset are Density, body fat,
age, weight, height, neck, chest, abdomen, thigh, hip, knee,
ankle, biceps, forearms and wrist. This dataset [16] consists of
252 data points and we trained all the above six mentioned
models using train_test_split with a ratio of 80%:20%. The
predicted output for these models was set as body fat
percentage. To check the performance of each model on the
mock dataset, model score was evaluated.

Fig. 8. Model Scores

Fig. 9. Actual Values vs Predictions

Random Forest Regression (RFR) gave the highest model
score out among all the considered models. To get a better
understanding, we further examined the actual vs. predicted
values graphs for all of the 6 machine learning models.

The line between the axes represents an ideal scenario
where the predicted value of body fat percentage perfectly
matches the actual value. x-coordinates represent the actual
values and y-coordinates represent the predicted values. In the
6th figure corresponding to Random Forest Regression, there
is the tightest clustering of points around the line which shows
that it has the most accurate predictions.

Fig. 10. Learning Curves

The learning curves are a visual representation of how
effectively the model adapts to the dataset. Y-axis denotes the
model score and the x-axis represents the number of training
examples. In Fig. 10, the graph located in the 1st row, 3rd
column, both the cross-validation and training score curves
and both converge well at the end. The rest of the models
either exhibit underfitting or overfitting, indicated by their
learning curves.

E. Data Collection
The dataset was collected using Omron’s scale. The

determination of the most relevant features used was made
using Random Forest’s inbuilt feature importance algorithm.
The features include Age, height, weight, BMI, body fat, neck,
wrist, knee, ankle and chest size.
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Fig. 11. Actual Data

60 accurate data points for Body weight, BMI, and Body fat
percentage were collected using Omron’s scale, and rest of the
measurements were taken using measurement tape. A Google
form was designed for manual entry of the collected
measurements.

Fig. 12. Form for Data Collection

Considering the limited size of the dataset, consisting of 60
data points, logistic regression with LASSO regularization
[17] was opted. It was because of the lower complexity and
improved resistance of Logistic regression to overfitting.

Fig. 13. Performance metric calculation

According to the MAE, MSE and R-squared values
observed in the Fig. 13 above we can draw the conclusions
below:
1. Mean Absolute Error (MAE): The value 1.6 states that

the model is giving a reasonably good performance as the
predictions are off by approximately 1.6 units from the actual
value, which in practical scenarios is very low.
2. Mean Squared Error (MSE): The value 5 states a

moderate predictive performance as MSE is a calculation of
the squared differences between predicted and actual values
which is desired to be small.
3. R Squared : The value of 0.62 represents that our model

is able to explain around 62% of the variability in target
variables, which can be considered a good performance.

Fig. 14. Model Accuracy Calculation

The model score defines how effectively the model has
adapted to the data. We got a model score of 61.11% which is
less as compared to the model score of the Random forest
model when used on the Mock dataset. It’s because the
random forest model works well when there is plenty of data
and it tends to overfit in less data. Logistic regression gave a
decent model score and body fat percentage prediction when
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used on the real data collected from Omron’s scale.

III. PROTOTYPING AND TESTING
In the realm of prototyping and testing during the project's
evolution, members of the group played a central role in
steering import hardware aspects. This process laid the
groundwork for subsequent experimentation, wherein several
iterations of breadboard circuits were purposefully designed.
These varied configurations aimed to systematically explore
and evaluate the output voltage characteristics of the circuit
under diverse operational conditions.

The testing journey was marked by a comprehensive
deployment of the Analog Discovery 2 (AD2), an invaluable
instrument in the arsenal of hardware exploration. Leveraging
the capabilities of the AD2, the individual orchestrated the
generation of alternating current (AC) signals, encompassing
both sine waves and square waves, meticulously tailored to
specific frequencies and amplitudes. These signals, integral to
the collaborative testing endeavor with a fellow team member,
served as a linchpin in comprehensively scrutinizing the
circuit's performance dynamics.

The AD2's functionalities extended to the realm of signal
analysis in the time domain, offering a detailed examination of
amplifier and filter outputs. This analytical dimension proved
to be a critical asset, providing nuanced insights into the
temporal behavior of signals and, in turn, facilitating the
troubleshooting and refinement processes integral to the
overarching design strategy.

Expanding the scope of analysis, the individual harnessed the
AD2 channels to conduct gain measurements across an array
of amplifiers. This quantitative assessment, elucidating the
ratio of output voltage to input voltage, played a pivotal role in
the diagnostic evaluation of circuit anomalies. Moreover, it
furnished a critical lens for the comprehensive evaluation of
the embedded operational amplifiers (Op Amps) within the
design.

The iterative nature of the testing and analysis process,
exemplified by the creation of multiple breadboard circuit
versions, emerged as a linchpin in the validation and
refinement paradigm. Each iteration not only substantiated the
circuit's functional fidelity but also contributed significantly to
the ongoing enhancements, ensuring the success and
robustness of the hardware implementation. The orchestrated
interplay between hands-on experimentation, collaborative
testing, and analytical scrutiny exemplified a holistic and
methodical approach to the prototyping and testing phase,
ultimately fortifying the project's foundation.

In the software domain, the ATMEGA328P microcontroller
was used and programmed. This microcontroller is a pivotal
component within our system. The focus of this programming
endeavor was the utilization of the microcontroller's
analog-to-digital converter (ADC) functionality. Specifically,
software routines were crafted to read the voltage at the output
of our circuit.

This voltage data holds paramount significance in the context
of the final body fat calculation—an essential metric for our
project. The accuracy of this voltage reading is pivotal as it
serves as a foundational input for the subsequent body fat
analysis. This analysis, in turn, is designed to be benchmarked
against other established body fat measurement methods, thus
validating the efficacy of our devised device.

Moreover, the generated voltage values and the subsequent
body fat calculations find broader applications within the
scope of machine learning algorithms. The amalgamation of
hardware data acquisition and software processing lays the
groundwork for a comprehensive approach, contributing not
only to the immediate functionality of our device but also to
its potential integration into broader analytical frameworks.

To witness the integration of the Machine Learning and
Body Fat Prediction, we can look at the code in Fig. 15 which
shows our implementation for predicting body fat percentages
using a logistic regression model. The example taken in code
is from the Omron’s dataset that was collected. The actual
Body fat percentage in this case was 14.6% and the logistic
model gave a prediction of 14% showing that the model has
effectively adapted to the data and is ready.

Fig. 15. Body Fat Percentage Prediction (Values)
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Fig. 16. Body Fat Percentage Prediction (Categories)

The code in Fig. 16 gives the category for predicted body
fat percentages whether it is very low, low, moderate, high or
very- high.

IV. CONCLUSION

Enhancing a patient's healthcare journey hinges on accurate
diagnosis and vigilant observation. In the future, we hope to
create a more compact device that will be accessible to all
people. Further development of the user interface would allow
easier usage of our device while maintaining the utmost
accuracy. In this context, the pivotal aspect involves the
precise and efficient analysis of a patient's body fat content.
We propose that Bioelectrical Impedance Analysis (BIA)
stands as the method through which this can be achieved. BIA
offers the capability to measure body fat percentage without
resorting to radiation exposure or deploying intricate and
invasive techniques. By accomplishing this design, we
envision not only refining the methodology for assessing body
fat content but potentially advancing our comprehension of
weight gain and enhancing the overall quality of life for
countless patients. The completion of this device signifies a
significant stride towards a more efficient and patient-friendly
approach to body fat analysis, with the potential to impact
healthcare practices and patient well-being on a broad scale.
Also, the ML model would further help in accuracy
improvement on a new device being built through the different
models tested. It was learned that logistic regression and
Random Forest regression can be used for body fat data
analysis. Our commitment extends beyond the current design,
as we envision a roadmap for ongoing enhancements and
refinements. By embracing emerging technologies and staying
attuned to evolving healthcare needs, our device has the
potential to continually evolve, offering increasingly accurate
and accessible solutions for body fat analysis. The journey
toward improved healthcare practices is an ongoing one, and
our device stands as a foundational step toward a future
marked by innovation and heightened patient well-being.
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